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The Floquet-Bloch waves in periodically inhomogeneous chiral media are considered. The wave vec-
tors are assumed to be arbitrarily oriented with respect to the grating vector. We have formulated gen-
eral equations of the dynamical diffraction by such a medium and have analyzed them in the two-wave
approximation under different conditions. It is shown that the band structure of the eigenmode spec-
trum can be qualitatively modified under the effect of chirality. At a sufficiently large chiral admittance,
the band gap that is forbidden for a given circularly polarized wave is split into two—central band gap
and chiral satellite—which are separated by an interval of transparency. The bandwidth of the satellite
is strongly dependent on the propagation angle and approaches zero as the wave vectors tend to be col-
linear with the grating vector. A change from the conventional Bragg diffraction band structure to the
complex-split one is through the range where points of J multiplicity and anomalous dispersion are
characteristic of the spectrum. The boundary-value problem under diffraction by a periodic chiral layer
is also analyzed. A unified expression for the reflection coefficient of the layer suitable over the entire re-
gion of the two-wave diffraction was obtained in the case of the complex-split spectrum. It is shown that
the presence of satellites in the spectrum results in the appearance of additional reflection band gaps
spaced both above and below in frequency relative to the central band gap. Unlike the latter, the side
band gaps each are opaque for a given circularly polarized component of an incident field whereas the
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oppositely polarized component passes through the layer without Bragg reflection.

PACS number(s): 03.40.Kf, 03.50.De, 42.79.Dj, 42.40.Eq

I. INTRODUCTION

Chiral media have been extensively studied in recent
years. They play an important role in applications in a
variety of fields such as radiophysics, optics, biology, and
chemistry. Electrodynamics of chiral media has been the
objective of monographs [1,2]. An approach based on
Beltrami-Maxwell field formalism [1] and covariant tech-
nique [3,4] proves to be highly efficient as applied to the
description of such media. But properties of periodically
inhomogeneous chiral media have yet received little at-
tention.

Highly general methods, both rigorous numerical and
approximate analytical, are well developed in a theory of
periodical media [5-16]. These methods have been suc-
cessfully applied to structures of different kinds, such as
antennas and microwave waveguides [5-8], photonics
crystals [9], optical gratings [10—15], and crystals under
x-ray diffraction [13,16]. All these methods are based on
either the Bloch function formalism or the coupled wave
equation approach.

Periodical chiral structures were considered in [17].
The transmittance and reflectance of a finite layer with
one-dimensional modulation of constitutive parameters
have been obtained in this paper using the Kogelnik cou-
pled wave theory [10] generalized to the given case.
However, consideration in [17] has been given to a very
particular case of normal incidence. As has been shown,
in this case chirality and periodicity act in some sense in-
dependently. That is, the periodicity leaves qualitative
features of the spectrum band structure unaffected, and
polarization properties of the output field prove to be
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qualitatively the same as they are in a homogeneous
chiral medium.

In a recent paper [18] the direct numerical method has
been applied to bianisotropic media, with constitutive pa-
rameters being specified by periodical functions of two
space variables. As an example, that paper presents cal-
culated dispersion curves of corrugated layer with bot-
tom ground plane.

In our paper, consideration is given to the general case
of oblique wave propagation with respect to the grating
vector. To analyze the eigenmode problem in a periodi-
cal chiral medium, we use the Bloch function formalism.
We show that the joint action of the periodicity and
chirality in the general case being considered changes
qualitatively both polarization characteristics and the
spectrum band structure of the medium.

II. GENERAL APPROACH

Consider the Bragg diffraction by a one-dimensional
periodic chiral medium being characterized by constitu-
tive relations which couple the electric E and magnetic H
field strengths with the inductions of these fields, D and
B:

E=nn)D—jécoB

H=jfcoD+vvB,
where 7)), V(o) are the reciprocal permittivity and per-
meability of an equivalent achiral homogeneous medium,
¢0)="V M)V (0 Stands for the light velocity in this medi-

um and 7, &, v are the scalar periodic functions of the z
coordinate:

(1)
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n o Mn
El= 3 £ e ~ingz (2)
v nETE O,

In this equation 7,,§,,v, are given coefficients and
N9,vo=1. It should be noted that adopted constitutive
relations (1) differ in form from the commonly used so-
called [19] Lindell-Sihvola (LS), Jaggard-Post-Kong
(JPK), and Drube-Born-Fedorov (DBF) equations in that
the vectors D and B are selected as independent vari-
ables. Of course, set (1) can easily be reduced by identity
transformations to any one of the above mentioned equa-
tions. Preference is given to the vectors D and B because
they allow us to present dynamical diffraction equations
in the simplest form. However, we must keep in mind
that generally the coefficients 7,,§,,v, are expressed
through all Fourier coefficients of constitutive parameters
from the LS, JPK, and DBF equations.

Let us analyze the Maxwell equations under constitu-
tive relations (1) and (2). First, we exclude E and H from
the field equations using relation (1), and then, in accor-
dance with the diffraction theory, represent the vectors
D(r,t) and B(r,?) as the expansions into the Bloch waves,

F(r,t)=e 7/ 3 F,,ejk"'r, (3)
where T
\/n_(()_)D(r,t)
F(r,t)= k,=(k,,0,ky,—ng) .

VvB(r,t) |’

F, are the six-vectors composed of the unknown constant
vectors D, and B,,, which are to be determined by ap-
propriate boundary conditions.

Substituting (3) in the Maxwell equations and applying
expansion (2) the set of dynamical diffraction equations in
chiral media can easily be obtained:

k,X ¥ A,.,F,=kF,, n=0,%£1,%2,..., 4)
m=—ow
where
- _jgn _V’l k= In)
" M _.’gn ’ C(o) ’

Note that the identity (F, -k, )=0 holds true. This fact
has motivated the choice of the vectors D and B as in-
dependent variables under the analysis.

Now let us define the polarization vectors of the partial
waves by

k()z—ng +i kx

1
+ o —
PR A

€, ‘ﬁ

The property of the vectors F,, to be transversal makes it
possible to express them in terms of e;:

F,=F,ef+F e, . (5)

Then, substituting this expansion into (4), one can ob-
tain the set of scalar equations for partial amplitudes:

.k
Pjz1=2 |F

= 2 Momlle,Pel,

m¥#n

JFL +(e, ?-e, P)F,P]. (6)

The quantity p is equal to £ if p is an index and p =+1 if
p is a multiplier; I stands for the 2 X2 unit matrix.

III. TWO-WAVE APPROXIMATION

General investigation of set (6) is very complicated. To
simplify the analysis, we adopt a set of assumptions.
First, we restrict ourselves to the case of the harmonical-
ly modulated medium, letting 7,,,£,,v, =0 at |n|>1. We
also suggest that the medium is weakly modulated, that
is,

Inill’i§i1’|'vi1|<<l . 7

Under this assumption, the two-wave approximation
[16] can be applied to the diffraction problem analysis.
This approximation implies that only the wave with wave
vector k; (the Z axis is assumed to be oppositely directed
with respect to the grating vector g) propagates near the
Bragg angle and, consequently, only amplitudes Fg 0,1 are
significant and should be taken into account in set (6).
All other diffraction orders have little influence on the
diffraction pattern and can be ignored. Thus, in the frame
of the two-wave approximation, dynamical diffraction
equations in the chiral medium take the form as follows:

F§=A_[(eg P-e)Ff +(eg e ")F 7],
(8)

k
PJLOI 0

Fi=M[(eq P-eQ)Ff+(eg " P)Fg P ] .

k
kalI Ao

It is known that there are two different waves with
wave vectors KT in a homogeneous chiral medium and

=k KE=VKI—RE. ©)

1F&,°
In view of condition (7), the propagation constants ko,1
are little different from K*. By this reason, the Bragg
condition in the chiral medlum is split at sufficiently large
& into three independent conditions of the spatial reso-
nance [17] (see Fig. 1):

2K =g(1+8%T), (10)
K +K =g(1+8677), (11)
2K, =g(1+67 7). (12)

The small corrections 8 stand for the resonance detun-
ing. At a given propagation angle, these resonances are
realized on different frequencies (Fig. 1). In this case,

o— ok

&=
a)%g b

where % stands for the Bragg frequency of the (p,s) res-
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FIG. 1. Graphical representation of all possible resonances

in a chiral periodic medium at a given propagation angle. For
the sake of definiteness, £, is assumed to be a positive quantity.
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onance, which is defined by Eqgs. (10)—(12) at §=0. Ata
given frequency, the resonances are bound to be observ-
able at different propagation angles or different grating
vector lengths.

Precisely, the existence of three independent reso-
nances in periodic chiral media is a main distinctive
feature of the problem being analyzed as compared with
the diffraction by achiral media.

A. Model of weakly interacting resonances
Let us assume now that the conditions

a1l €4l Ivaq | <<€l (13)

are satisfied. Physically, they establish the region of the
parameters varying where Bragg resonances (10-(12)
can be recognized far apart from each other. Since the
amplitudes Fi of the diffracted waves are different from
zero only in the vicinity of a Bragg resonance, fulfillment
of (13) makes is possible to facilitate further analysis by
neglecting mixing of the resonances. Conditions (10) and
(12) call for the amplitudes F (}f 1 and Fg; to be taken into
account in Egs. (8), correspondingly [(+,+) and (—, —)
resonances]. In contrast, when condition (11) holds,
there are two independent solutions that couple either the
amplitude F; with F{ [(+,—) resonance] or F; with
F 1+ [(—,+) resonance]. So, mathematically, the model
of weakly interacting resonance implies that only the
variables indicated above are significant in each of the
specific cases defined by Eqs. (10)-(12) and should be tak-
en into account under analysis.

Next, impose the restriction on the propagation angle
by the condition

2
, (14)

+

Inil|’|§:t1|y|vj:1|<< K:t

and neglect, in view of (7) and (13), the dependence on
k, of the scalar products involved in (8). Then, eliminat-
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ing Boi,1 among Eqgs. (8), one can reduce these equations
to the form as follows:

PDE—x" D5 =0,
xPDE+(P —28)D5 =0 .

(15)

Here P=2(K?—ky,)/g. To a first approximation in
[741]5 €411, |v41], the coupling coefficients x%, are deter-
mined by

XE 1 =Ly [mey+psve,—(p +5)644],
_(K?)?
P kgK?

(16)

(eg 7-e}) .

These coefficients are calculated at zero detuning. Note
as well that L,;7L,,. The quantities p and s in (15) and
(16) are varied independently and, thus, these equations
define all four possible resonances.

Equations (15) are identical to the equations defining
the Bragg diffraction by a periodical achiral medium with
the effective coupling coefficients Y%, [16]. From the
dispersion equation of set (15), one can find nontrivial
solutions that establish propagation constants in the
medium:

kP =K+ E(—52V/ 8~y xP) . (17)

Equations (15)—(17) will be used below under the analysis
of the eigenmode spectrum and boundary-value problem
in the case of weakly interacting resonances.

B. Model of strongly interacting resonances

Now, we consider the case when the inequality

&0l <<max{|nyl,1E41], vyl (18)

is satisfied instead of (13). Note that (18) does not limit
significantly the commonness of the analysis because con-
ditions (13) and (18) taken together cover all the range of
the varying parameters |7.,|,|£4,],|v+,| that is of practi-
cal interest. It should also be emphasized that there is a
range where (13) and (18) are fulfilled simultaneously. It
means that a continuous transition exists from results be-
ing given by this model to the results of Sec. IIT A.

Physically, condition (18) defines the case of closely
spaced and, hence, strongly interacting resonances. In
this case, all the amplitudes Fffl turn out to be coupled
and the approximation used in Sec. III A cannot be ap-
plied. Putting the determinant of set (8) equal to zero, we
obtain a characteristic equation of the eighth degree in P,
defined here by

2k02

P=1—

In view of condition (18), P should be taken as being a
small quantity. It allows us to neglect the terms O (P?)
and O(P®%) in the characteristic equation, which then
takes the form as follows:
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®(P)=P*—2(8?+d3—M)P?+86*—2(d% + M)8?
—4dy(a_,d,+a,d_;)8+N=0. (19)

Because resonances (10)-(12) are closely spaced, we
have used in (19) the unified Bragg frequency for all of
them:

The other parameters in (19) are given by
M=aa_,+bb_,+dd_,,
N=(a}—bt—d?)a%,—b%,—d%,)

—2d%(a,a_;—bb_,+d,d_,)+d} ,
dy=E&p/cos?0 , d,., =&, tan%0,
ai =Xny +vitan?d,
by =ty —vyy), tanb=k, /k, .

In the next section, we discuss the Floquet-Bloch eigen-
modes spectrum, which follows from Egs. (17) and (19).

IV. EIGENMODE SPECTRUM

Figures 2—4 show the dispersion characteristics of the
periodic chiral medium computed at different values of &,
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FIG. 2. Eigenmode spectrum in the case of strongly interact-
ing resonances. £,=0.0065, 74+;=0.03, v, ,=0, tan6=0.7.
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FIG. 3. Transformation of the eigenmode spectrum under
effect of the chiral admittance growth. £,=0.01; all other pa-
rameters are the same as those in Fig. 2.

in the case when £, ,=v,;=0. So far as £, is assumed to
be a small quantity, such conditions correspond to the
medium with the weakly modulated permittivity, con-
stant permeability, and chiral admittance. The case of the
conventional Bragg diffraction by the achiral medium is
presented by dashed lines in Fig. 4. Two eigenmodes ex-

0.154

0.104

0.054 L

-0.104""

-0.16 T
-0.10

“0.05 0.0 | 0.05 "0.10

Detuning, ¢

FIG. 4. Eigenmode spectrum in the case of weakly interact-
ing resonances. £,=0.035; all other parameters are the same as
those in Fig. 2. Dashed lines correspond to the equivalent
achiral medium.



51 FLOQUET-BLOCH WAVES IN PERIODIC CHIRAL MEDIA

isting in this case are linearly polarized and have different
forbidden band gap widths.

The appearance of the chirality results in a qualitative
change of the dispersion characteristics. The curves in
Fig. 2 illustrate the case of strongly interacting reso-
nances. In the interior of the central forbidden band gap,
the dependence Re(P) on § [Fig. 2(a)] forms a closed loop
that intersects the axis Re(P)=0 in the points of Jordan
J
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multiplicity (J multiplicity) of the matrix operator (8). In
these points this operator becomes a nondiagonalized one
containing the 2X2 Jordan canonical blocks. Analytical-
ly, the points of J multiplicity appear where Eq. (19) and
the condition d®/dP =0 are satisfied simultaneously.
Expressing from the latter P in terms of § and substitut-
ing into (19), one can find the values of § corresponding
to the points of J multiplicity:

So far as a physical meaning may have only real vales of
8, the condition

(a,d_,+a_,d)*>(d3—M)?*—N, 1)

which follows from (21), defines the range of the constitu-
tive parameters conforming to the loop formation.

In the points of J multiplicity (6=29, ,), the associated
waves occur with amplitudes linearly dependent on the
spatial coordinate. These waves are expressed in terms of
the associated Keldysh functions [20] forming, along with
the eigenfunctions, the system of root functions of the
non-self-adjoint operator of the problem being con-
sidered. The associated waves were studied in certain
types of microwave waveguides [21-23] and in the crys-
tal optics (Voight [4] and Petrov—Fedorov [24,25] waves).
In the given case, it is remarkable that the associated
waves appear, owing to the interaction of resonances
(10)—(12) and, consequently, they are a result of the mu-
tual influence of periodicity and chirality.

The loop on dispersive characteristics existing at
8,<8<8,; is the band of ambiguous dispersion with
anomalous dispersion in the range where d Re(P)/d 8 <O0.
These features are identical to the effect of complex
waves in certain types of regular waveguides [26,27].

The dependence Im(P) on § is also of interest. When
&, is small, the plot of this dependence [Fig. 2(b)] can be
referred to as a “closed bud.” As &, increases, the bud
opens [Fig. 3(b)] and the loop pulls apart [Fig. 3(a)]. The
“petals” of this bud move apart in the process and inter-
vals of transparency appear between them. The central
petal (forbidden band gap) is opaque to both eigenmodes,
whereas the side band gaps are opaque to only one of
them. The further growth of the chirality results in
transparent intervals broadening and, consequently, in
the depression of resonance interaction. It leads gradual-
ly to the case of weakly interacting resonances (Fig. 4),
being defined by condition (13). Eigenmodes in this case
are circularly polarized, that is, the inequality (13) is the
condition of separation of different polarization states.

Thus, in the chiral medium at sufficiently large admit-
tance &£,, the central forbidden band gap, which is com-
mon to both waves, is accompanied by two satellites.
Their position with respect to the central bandgap is
determined by conditions (10) and (12). At £,>0 the sa-
tellites for left- and right-circularly polarized waves are
above and below the central band gap, correspondingly.
At £, <O the situation is reversed.

The satellites decrease in width as the propagation an-

8, 2=-——2—‘1};[a,d_1 +a_,d, 2V (a,d_,+a_,d,*+N—(di—M)?] . (20)

[

gle grows smaller, and they fully disappear when the vec-
tors K?” become collinear with the grating vector g. In
this particular case, the amplitudes F§ and F% turn out to
be uncoupled in (8) due to (e, #-e§)=0 and, consequently,
resonances (10) and (12) can in no way be manifested.
This fact was revealed in [17]. Thus, our results at K”||g
are in agreement with the consideration given in [17]: the
band structure of the spectrum is analogous to that in
achiral media, but it conforms to circularly polarized
waves.

The situation is opposite that considered above in the
medium with the modulated chirality £ and constant 7
and v. As follows from (16), both resonances (11) do not
manifest themselves under an arbitrary propagation an-
gle. As a result, the central band gap disappears in the
spectrum under given conditions.

V. BOUNDARY-VALUE PROBLEM

Let a circularly polarized plane wave exp(jK?”-r)ef be
incident obliquely at a layer of periodically modulated
chiral medium bounded by the equivalent homogeneous
medium with the parameters 7,,&,,v,. The layer boun-
daries are considered to be perpendicular to the Z axis.
We restrict ourselves to the model of weakly interacting
resonances studied in Sec. III A. Then, to this approxi-
mation, the electric field inside and outside the layer near
the (p,s) resonance can be written in the form as follows:

_ _JjK- JKr
D, (r)=e/*Tef+Dje’ " e},

_ iKP-
Dout(r)—DguteI 'ef »

k. e (22)
D(r)=[Dgle 0 +D62€ 0 ]eg
(kD4 g)- (K24 o)
+[Dsne](k° +g)r+DslzeJ(k0 +g)r]es1 ,
where K:=(k,,0,—K}), k{’=(k,,0,k})). The wave

numbers k) are determined from (17). We neglect in
(17) the effect of reflection because the constitutive pa-
rameters 7)g,&g,v, are assumed to be continuous at the
layer boundaries. It makes possible scalar formulation of
boundary conditions for the fields defined by Eqgs. (22):

1=D§, +Df, , D;=Di,+Dj,,
iKPl -k(l) :2.(2)
D2 e’ =D’ 4 pp e’ | (23)

e (1) 2 (2)
Jjko,'l jkoo'l
0=D“{1e 0z +D§2€ 0z N
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where [ is the layer thickness.

Note that D§; and Dj; are the linearly dependent solu-
tions of set (15) corresponding to the solution k) (17) of
the characteristic equation. Thus, Egs. (23) allow the
determination of all unknown amplitudes inside and out-
side the layer.

As might be expected from the diffraction problem for-
mulation in the case of weakly interacting resonances,
boundary conditions (23) as well as diffraction equations
(15) turn out to be identical to the corresponding equa-
tions for the Bragg diffraction by a periodical achiral
medium [16]. In view of this fact, one can use well-
known expressions for field amplitudes given, for in-
stance, in [16]. In particular,

Xt

8+ 82— x* xPeot

Di= (24)

123_‘/52_)(15!)(-;1:

Note that D} as well as other amplitudes in (24) depend
on both indices p and s. We use only one of them corre-
sponding to the polarization of a given wave to avoid
cumbersome designations.

For an incident wave of unit amplitude the quantity D}
expresses the reflection coefficient with respect to D. In
general, this coefficient does not coincide with the
reflection coefficient relative to E. Indeed, by extracting
E from the constitutive relations (1), one can obtain,
through some manipulations, that E; is given by formula
(24), in which the coupling coeﬁicwnts P LxE (16) are

replaced by
s
XZ= I;_,,X‘El ) sp_ S1p (25)

It can easily be shown that in lossless chiral media, as
distinct from conventional dielectrics, |Df|% |Ef|?*#1
near the (p, —p) resonance (central forbidden band gap)
even at /— oo. Moreover, it can easily be shown that
|D|%|ES|>>1 at certain conditions. The equality
|ES 2=1 holds true only at the normal incidence, that is
in agreement with [17]. In this case, too, |Df|*#1. It
should be emphasized that the inequality |D?|?,|Ef|?>#1
does not contradict energy conservation, as might appear
at first sight. The quantities D}, E; defined by Egs. (24)
and (25) couple different modes propagating at different
angles with respect to grating boundaries. That is why a
conventional statement of conservation of energy under
the Bragg diffraction cannot be applied to the case being
studied. The situation here is analogous to that in plasma
waveguides under the eigenmode reflection from trans-
verse metal walls [28] where |ES| > 1 as well. As has been
mentioned in [6], from this point of view it would be
more correct to refer to DJ,E’ as transformation
coefficients instead of reflection ones.

Equation (24) holds true in the vicinity of the Bragg
frequency w%. As o recedes from the edges of a corre-
sponding forbidden band gap, being defined by the equa-
tion |8] <V x” X, the coefficient D; rapidly decreases.
For this reason, expression (24), being applicable in each
case only near a corresponding resonance, can be extend-
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ed beyond resonance regions. It enables the unified pre-
sentation of the reflection field over the entire frequency
region of two-wave diffraction. Let an incident field be
given by

D, (r)= ¥ Dfe/ref, (26)
p==1
where D{ are given quantities. Then, taking into ac-
count the above reasoning, the reflected field can be
presented in the following form:

D,(r)= 3 D&Dje/Xe; . 7)
ps==t1
Recall that the amplitudes D; depend on both indices.
Equation (27) shows that, generally, the layer being
considered has three reflection band gaps. The central
one reflects the fields of both polarization, whereas side
band gaps are selective with respect to the polarization
sign. This is a distinguishable feature of the Bragg
diffraction in chiral media.

VI. CONCLUSION

We have presented a theory for describing Floquet-
Bloch wave diffraction by periodically inhomogeneous
chiral media at arbitrary mutual orientation of the propa-
gation and grating vectors. The theory predicts novel
dispersive properties of such media that are qualitatively
different from those in the particular case of the col-
linearly oriented vectors mentioned above. It is of interest
that these properties prove to be similar in many respects
to dispersive characteristics being manifested by magneti-
cally ordered Mossbauer crystals and cholesteric liquid
crystals [13]. This analogy supports a relationship be-
tween the optical properties of such crystals and chiral
periodic media.

It should be emphasized that in the case of weakly in-
teracting resonances, when a transparent interval be-
tween the central band gap and the satellite is sufficiently
large, the chiral periodic medium can be considered as
equivalent to an achiral grating with the same periodicity
and an effective permittivity. This permits the extension
of the conventional diffraction theory results [10,16] to
the case being studied. We have used it in Sec. V, analyz-
ing the plane wave diffraction by a chiral periodic layer.

Such an approach can also be applied to the investiga-
tion of nonstationary process in chiral gratings. The
problem of the pulse propagation through a chiral medi-
um is of great interest, but this problem has been ana-
lyzed in the simplest case of the chiral homogeneous lay-
er [29]. On the other hand, a rigorous time-domain
analysis of an ultrashort pulse diffraction by dielectric
gratings has been given in [30,31]. In the case of weakly
interacting resonances, this time-domain analysis is appli-
cable to the chiral periodic layer with effective coupling
coefficients (16). By analogy with [30,31], one can predict
the effect of temporal compression with respect to circu-
larly polarized phase-modulated pulses.
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